Weather Information Communications (WINCOMM) Overview and Status

Weather Accident Prevention

2nd Annual Project Review

June 5-7, 2001

Cleveland, OH

K. (Gus) Martzaklis
NASA Glenn Research Center
Cleveland, OH 44135
(216) 433-8966
k.martzaklis@grc.nasa.gov

In-Flight Weather Information

System Elements

Aviation Safety Program

Weather Information Communications

Enhanced Weather Products (AWIN)

Communications
Networks and
Data Links
(WINCOMM)

Operator
Support
(AWIN)

Technology Investment Areas

Aviation Safety Program

Weather Information Communications

- Datalink Requirements & Architecture Analyses:
 - Mid-Term (2010)
 - Far-Term (>2020)
- Air/Ground Datalinks
 - Ground-based (terrestrial)
 - Satellite-based
 - Airborne-based
- Network Technologies
 - Aeronautical Telecommunications Network (ATN)
 - Internet Protocol (IP)

(Focus: Commercial Air Transport and General Aviation)

NAS Information Exchange

Aviation Safety Program

Weather Information Communications

Options:

- Analog Voice
- •ACARS
- •VDL Modes 2-4
- Mode S
- •UAT
- SATCOM
- •HFDL
- Commercial
- Proprietary Links

FIS Datalink Architecture Analyses*

Aviation Safety Program

Weather Information Communications

Key results to date:

- SAIC, ARINC, TRW, Crown Communications Weather Datalink Architecture Study (May, 2000) and in-house analyses:
 - Broadcast is preferable to addressed 2-way for FIS (Weather)
 - VHF-Broadcast can support regional FIS data, however challenge to meet national implementation goals (coverage/interference)
 - Need broadband solution which could support regional/national goals (SATCOM and/or line-of-sight)
 - Hybrid broadcast solution, optimal:
 - Ground-based narrowband for local/regional FIS
 - SATCOM for national/strategic

Hybrid FIS Datalink Architecture

Aviation Safety Program

FIS Datalink Architecture Analyses*

Aviation Safety Program

Weather Information Communications

On-going tasks:

- Comprehensive AutoMET/TAMDAR datalink architecture options
- JH/APL tasks:
 - Independent investigation of ground, satellite and hybrid datalink architectures for FIS
 - 2007-2015 implementation timeframe
 - Investigation of 'ADS-B' datalinks for FIS/Wx and low-altitude AutoMET (TAMDAR) dissemination
 - Mode S (1090), UAT, VDLM4
 - Supported by high fidelity modeling and simulation

Air Transport: Ground-based Datalinks*

Aviation Safety Program

Weather Information Communications

USAF C-135C

Boeing Transport Cooperative Agreement

Honeywell Transport Cooperative Agreement

- •Phase I (FY98-00) efforts (Boeing & Honeywell) utilized off-the-shelf comm for rapid implementation (air phone, VHF/ACARS, ...)
- Optimal long-term operational end-solution may differ (VDL Mode 2, SATCOM)
- Recent In-Service-Eval's (ISE) of HI system by UAL (Electronic Flight Bag concept)

Air Transport: Ground-based Datalinks*

Aviation Safety Program

Weather Information Communications

Results to date:

- •Grants with Ohio University to assess addressed VDL-Mode 2 datalink for weather dissemination.
- Laboratory bench testing completed
- Initial flight experiments completed (Ohio U King Air)

Future activity:

- •Partnering with ARINC to jointly evaluate VDL-2 datalink performance for FIS (Weather) applications. (VDL-2 is future upgrade to ACARS)
- •Experiments will include both signals-in-space as well as network characterization (ATN).
- •Hardware will be integrated on NASA B-757 research aircraft for upcoming flight experiments with ARINC ground-system.

Air Transport: Ground-based Datalinks*

Aviation Safety Program

NASA Langley B757 Aircraft

Equipment

Transmitter Location

Air Transport: Satellite-based Datalinks*

Air Transport: Satellite-based Datalinks*

Aviation Safety Program

Weather Information Communications

Worldwide SATCOM Transport Datalink:

- •NASA / Rockwell Collins / Jeppesen / American Airlines / Worldspace team
- Government/industry cost-sharing
- •In-Service Evaluation via two American Airlines B-777s flying transpacific routes
- •1st 777 install completed, including all certs
- •2nd 777 install completion May, 2001
- Trial 'runs' completed to Japan
- •First 'official' flight May 21, 2001; commence data collection thereafter

Air Transport: Satellite-based Datalinks

Aviation Safety Program

- •Enabling technologies:
 - Phased array antennas
 - Broadband mobile terminal
- Joint NASA/Boeing development
- •Up to 1000x capacity increase
 - •256 Kbps off aircraft
 - •2.18 Mbps to aircraft
- Ground-mobile experiments
- Proof flight test Dec, 2000 (DC-8)
- Upcoming B-757 experiments
- Enabling to Connexion by Boeing

General Aviation: Ground-based Datalinks*

Aviation Safety Program

Weather Information Communications

- Cooperative NASA research with ARNAV and Honeywell (NavRadio)
- VHF-based broadcast & 2-way datalinks
 - VDL-Mode 2
 - •GMSK
- Addresses near-term need for broadcast of graphical weather to the G/A cockpit
- Resulting FAA/industry implementation:
 - •G/A focused service volume
 - Dual vendors (ARNAV & Honeywell)
 - •5 year FAA contract (FY00-04)
 - •2 national frequencies per vendor
 - Free text weather products
 - Fee-based value/graphical products

17,500 Ft. MSL

Altitude Coverage

5,000 Ft. AGL

General Aviation: Satellite-based Datalinks

Aviation Safety Program

Weather Information Communications

Flight test and evaluation of worldwide weather datalink capability using broadcast Satellite Digital Audio Radio Services (S-DARS).

Johannesburg, South Africa September, 1999

AfriStar Satellite

Patch Antenna Mounted to Cessna 172

Internal Equipment (GPS, Laptop Computer, etc.)

Satellite

Receiver

General Aviation: Satellite-based Datalinks*

Aviation Safety Program

Initial flight evals Fall, 2001

Low-Altitude AutoMET Reporting

Aviation Safety Program

Weather Information Communications

NASA

- Use aircraft operating below 20,000 ft altitude to sense and report
 - Moisture
 - Temperature
 - Winds
- •To be used by:
 - Forecast models
 - Weather briefers
 - Controllers
 - Other aircraft
- Investigating numerous airbornebased datalinks and architectures for technical feasibility

MDCRS & AMDAR Coverage from Transports

20,000 ft. MSL

AutoMET Coverage

Ground Level

AutoMET: Airborne-based Datalinks*

Aviation Safety Program

Weather Information Communications

Airborne-based Datalinks:

- Extension of MDCRS service (ACARS/ARINC)
- VHF/GMSK (ARNAV Systems)
- •VDL-Mode 2 (ARINC & HI)
- UAT (FAA Capstone & UPSAT)
- Satellite (OrbComm, others)
- ADS-B Datalinks (JH/APL)

NASA Cessna 206

Network Protocols Development

Aviation Safety Program

Weather Information Communications

NASA

- •Past tasks with MIT/LL for FIS:
 - ATN and Internet Protocol
 (Mobile IP) network feasibility
 - •IP-over-VDL Mode 2 datalink interface definition
- •Joint NASA/ARINC research:
 - •FIS over IP/VDL-Mode 2
 - •FIS over ATN/VDL Mode 2
- •ATN over broadband SATCOM feasibility
- Next-generation Mobile IP research for aeronautical app's

Network Routing Connectivity

FAA/NASA Collaboration

Aviation Safety Program

- FIS Datalink & Weather Requirements Offices (AUA & ARW)
 - Co-funded tasks under NASA/FAA Memo of Agreement:
 - Low-altitude AutoMET datalink technical architecture alternatives
 - FIS/Weather datalink technical architecture analyses:
 - Mid-Term (2004-2007)
 - Far-Term (2010 and beyond)
 - Terminal area weather datalink communications alternatives
- Office of Architecture and System Engineering (ASD)
 - Joint Research Project Definitions (JRPDs):
 - FIS datalink architecture analyses & NAS Architecture integration
 - Terminal area broadband communications
- CAPSTONE Program (Alaska)
 - UAT datalink investigation for AutoMET; SATCOM augmentation

Summary

Aviation Safety Program

- NASA datalink technology investments in
 - FIS datalink architecture development guidelines
 - Ground, satellite and airborne weather datalink systems and supporting network standards
- Strong partnerships with industry, FAA and academia evidenced by
 - Cost-shared NASA/industry technology development
 - Jointly co-funded NASA/FAA tasks
- As a result, beginning to see introduction of 1st generation systems into the marketplace
- Continued future NASA research and technology development into breakthrough, next-generation systems and component technologies.